The Effect of Starch on the Activity of Amylase with Ph Variable

The Effect of Starch on the Activity of Amylase with pH Variable Lab Report, Fall 2011 East Tennessee State University Department of Biological Sciences By: Shelby Brackett Date Performed: October 10, 2011 Lab Instructor: Joseph Kusi Biology 1111, Section 018 Abstract Enzymes are very important in chemical reactions. They are used to speed up the reaction taking place. They act by binding to a specific substrate and form an enzyme-substrate complex that may put stress on chemical bonds of that substrate. In this experiment, we used the amylase as our enzyme and starch as our specific substrate.

We then used a calorimeter to measure the absorbance of our samples with the variable of pH over set periods of time. Our results indicated that at three different pH levels, the absorbance level of our samples was not the same for each one. This proved my original hypothesis to be incorrect, as I was surprised to find that the last pH buffer had no effect on the absorbance. The first two pH buffers supported my hypothesis, however. The levels of our samples kept decreasing over time. As with every experiment, it should be repeated several times to make sure your results are accurate.

Introduction Most chemical reactions must be catalyzed (sped up) by protein molecules called enzymes. Enzymes are biological catalysts that facilitate specific chemical reactions. Enzymes are three-dimensional globular proteins that fit snugly around the molecules they act on. This fit facilitates chemical reactions by stressing particular chemical bonds. The three-dimensional shape enables it to stabilize a temporary association between substrates-the molecules that will undergo the reaction. The enzyme also lowers the activation energy required for new bonds to form.

The reaction thus proceeds much more quickly than it would without the enzyme. (Mason, 2011). The energy of activation is the energy needed to get the substrate to its transition state. KI (potassium iodide) is used to detect the presence of starch when conducting these experiments. Another thing to consider when talking about enzymes is optimal conditions. These are a set of environmental conditions at which the enzyme works at its highest rate. Some of these environmental variables are pH, temperature, and salinity.

Changes in pH may not only affect the shape of an enzyme but it may also change the shape or charge properties of the substrate so that either the substrate cannot bind to the active site or it cannot undergo catalysis. (The Effect of pH on Enzyme Activity, 2004). Increasing the temperature of an uncatalyzed reaction increases its rate because the additional heat increases random molecular movement. This motion can add stress to molecular bonds and affect the activation energy of a reaction. (Mason, 2011). When a substrate molecule is trying to bind to the active site, presence of salt could alter the rate of the reaction.

In our experiment, we used the protein amylase. Amylase is an enzyme that breaks down starch, converting it into sugar. Amylase is found in human saliva, where it begins a chemical process in digestion with the hydrolysis of starch. It is also found in the pancreas. (Brady, 2003). We used the substrate starch with the variable, pH, to measure the absorbance of our samples using a calorimeter. My hypothesis was that at each different pH buffer, there would be more and more absorbance over time. Materials/Methods To execute this experiment, we did the following steps. First, you pipet 8ml of 0. % starch solution and 6ml of water into 3 test tubes and label them L, M, and H. Next, you add 1ml of pH4 buffer to L test tube; 1ml of pH7 buffer to test tube M; and 1ml of pH10 buffer to test tube H. Then pipet 2ml of water and add 3 drops of KI into 16 different test tubes (5 each behind the test tubes L, M, and H) and label them L? , M? , H? …………L? , M? , and H? and keep the remaining one for zeroing the calorimeter(reagent blank). Next remove 1ml of solution from L, M, and H to the test tubes L? , M? , and H? respectively. Measure their absorbance and record the values.

Make sure to zero the calorimeter before every measurement. Next, pipet 1ml of amylase solution to L, M, and H (mix) and wait for 1 minute interval. Then, remove 1ml of L, M, and H into L? , M? , and H? respectively (mix) and measure the absorbance of the samples and record the values. Repeat this last step for the rest of the samples for the same time interval. Results The table and graph below represent the absorbance levels that we obtained from our experiment. Table 1 Time of measurement| Reaction 1 L (pH4)| Reaction 2M (pH7)| Reaction 3H (pH10)| Time: 0| 2. 0| 0. 85| 2. 00| 1| 1. 71| 0. 53| 2. 00| 2| 1. 46| 0. 06| 2. 00| 3| 1. 42| 0. 05| 2. 00| 4| 0. 97| 0. 00| 2. 00| Graph 1 Graph 2 Graph 3 Discussion In conclusion, the results from this experiment failed to support my hypothesis. My original hypothesis stated that at each different pH buffer, there would be more and more absorbance over time. Our results show that at pH4 buffer the absorbance increased by causing our readings to go down at a steady pace. From starting at Time 0, the end reading was at 0. 97. This particular reaction supported my hypothesis.

The next reaction with pH7 buffer also supported my hypothesis. There was also more absorbance over time intervals. Our numbers decreased but this time, at a faster pace. There was a jump from 0. 53 to 0. 06. This would cause me to believe that at pH7, this would be the optimal condition for enzyme activity for amylase. In the last reaction, I was surprised to find that there was no change at all. The pH10 buffer had no effect with the absorbance of our amylase-starch sample. This particular reaction failed to support my original hypothesis.

So, in conclusion, using the enzyme amylase and the substrate, starch, we found that the effect of pH on this solution caused a steady absorbance for pH4, a fast absorbance at pH7-which caused me to believe this is optimal pH, and no absorbance at pH10. Bibliography Brady, Matt. What is Amylase? 2003. 22 October 2011 <http://www. wisegeek. com/what-is-amylase. htm>. Mason, Kenneth A. , Jonathan B. Losos and Susan R. Singer. Biology. New York, NY: McGraw-Hill, 2011. The Effect of pH on Enzyme Activity. 2004. 22 October 2011 <http://academic. brooklyn. cuny. edu/biology/bio4fv/page/ph_and_. htm>.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Leadership Studies
excellent job
Customer 452773, August 3rd, 2023
Human Resources Management (HRM)
excellent job
Customer 452773, July 17th, 2023
Business and administrative studies
Excellent job
Customer 452773, March 17th, 2023
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
FIN571
excellent work
Customer 452773, March 1st, 2024
Human Resources Management (HRM)
excellent
Customer 452773, July 11th, 2023
Leadership Studies
awesome work as always
Customer 452773, August 19th, 2023
Data 564
excellent work
Customer 452773, April 11th, 2024
History
Don't really see any of sources I provided, but elsewise its great, thank you!
Customer 452697, May 8th, 2021
Human Resources Management (HRM)
excellent, great job
Customer 452773, June 19th, 2023
Business and administrative studies
always perfect work and always completed early
Customer 452773, February 21st, 2023
Business and administrative studies
excellent job! got an A, thank you
Customer 452773, May 24th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp