SPSS analysis on modern portfolio theory-optimal portfolio strategies in today’s capital market


This paper provides information on specific ideas embedded in single index model/construction of optimal portfolios compared to the classic Markowitz model. Important arguments are presented regarding the validity of these two models. The researcher utilises SPSS analysis to demonstrate important research findings. This type of analysis is conducted to explore the presence of any significant statistical difference between the variance of the single index model and the Markowitz model. The paper also includes implications for investors.


In the contemporary environment involving business investments, selecting appropriate investments is a relevant task of most organisations. Rational investors try to minimise risks as well as maximise returns on their investments (Better, 2006). The ultimate goal is to reach a level identified as optimal portfolios. The focus in this process is on initiating the portfolio selection models, which are essential for optimising the work of investors. Research shows that the Markowitz model is the most suitable model for conducting stock selection, as this is facilitated through the use of a full covariance matrix (Bergh and Rensburg, 2008).

The importance of this study reflects in the application of different models so as to develop adequate portfolios in organisations. It is essential to compare certain models because investors may be provided with sufficient knowledge about how they can best construct their portfolios. In this context, the precise variance of the portfolio selection model is important, as it reflects portfolio risk (Bergh and Rensburg, 2008). Information on the parameters of different models is significant to make the most appropriate decisions regarding portfolio creation. Markowitz is a pioneer in the research on portfolio analysis, as his works have contributed to enhancing investors’ perspectives on the available options regarding specific models of constructing optimal portfolios (Fernandez and Gomez, 2007).

Research Methodology

The research question presented in this study referred to the exploration of ideas embedded in single index model/construction of optimal portfolios and comparing them with the classic Markowitz model. The focus was on the construction of optimal portfolios, as the researcher was concerned with the evaluation of constructed portfolios with specific market parameters (Better, 2006). Moreover, the researcher paid attention to the stock market price index, including stocks of organisations distributed in three major sectors: services, financial, and industrial (Fernandez and Gomez, 2007). The behaviour of this index was explored through the implementation of SPSS analysis. The data covered a period of seven years, starting on January 1, 2000 and ending on December 31, 2006. It was essential to evaluate the effectiveness parameters of the single index model/construction of optimal portfolios and the Markowitz model. The criteria for the selection of companies included that all organisations shared the same fiscal year (ending each year on December 31) as well as they have not demonstrated any change in position.

Results and Data Analysis

The research methodology utilised in the study is based on the model of single index/optimal portfolios and the Markowitz model. The exploration of the relationship between these two models required the selection of 35 equally weighted optimal portfolios, as two sizes of portfolio were outlined. An approximate number of 10 optimal portfolios represented the first size, which further generated 12 portfolios. In addition, the researcher considered the option of simulating of optimal portfolios represented at second sizes (Bergh and Rensburg, 2008). The criterion of queuing randomise portfolio selection has been used to generate approximate 23 portfolios from the second size category. The researcher selected five and 10 stocks to analyse the data. The portfolio size split allowed the researcher to explore how the portfolio size could be used to affect the relationship between the single index model/optimal portfolios and the Markowitz model (Fernandez and Gomez, 2007). Results of testing the data are provided in the table below:

Optimal portfolio numberVariance of Single Index ModelVariance of the Markowitz ModelOptimal portfolio numberVariance of the Single Index ModelVariance of the Markowitz Model

Table 1: Variance of Five and 10 Optimal Portfolios

Based on the results provided in the table, it can be concluded that the variance between the single index model/construction of optimal portfolios and the Markowitz model is similar. For instance, values of 0.0020 and 0.0019 for the variance of the two models are similar. This means that the results do not show substantial statistical differences between the two models. The tables below contain a descriptive summary of the results presented in the previous table:

MeasureSingle Index ModelMarkowitz Model
Standard Deviation0.00370.0035

Table 2: Descriptive Summary of 10 Optimal Portfolios

The results in Table 2 were derived from testing the performance of 10 optimal portfolios. It has been indicated that the mean for the single index model of 10 portfolios is 0.0044, while the mean for the Markowitz model is 0.0047, implying an insignificant statistical difference. The minimal value of the single index model is reported at 0.0021, while the minimal value of the Markowitz model is 0.0020. The difference is insignificant. The maximum value of the single index model is 0.0212, while the same value of the Markowitz model is 0.0202. Based on these values, it can be argued that there is a slight difference existing between the two models. The standard deviation of the single index model is 0.0037, while the standard deviation of the Markowitz model is 0.0035, which also reflects an insignificant statistical difference.

MeasureSingle Index ModelMarkowitz Model
Standard Deviation0.00200.0019

Table 3: Descriptive Summary of 5 Optimal Portfolios

Table 3 provides the results for five optimal portfolios. These results are similar to the ones reported previously (10 optimal portfolios). The mean for the single index model of 5 optimal portfolios is 0.0028, while the mean for the Markowitz model is 0.0031, implying an insignificant statistical difference. There are insignificant differences between the two models regarding other values, such as minimal and maximum value as well as standard deviation.

Furthermore, the researcher performed an ANOVA analysis of 10 optimal portfolios, which are presented in the table below. It has been indicated that the effective score for the single index model and the Markowitz model is almost the same. Yet, an insignificant difference was reported between the two means and standard deviations for both models.

ANOVA AnalysisSum of squaresDfConditionMeanStandard DeviationStandard Error MeanFSig.
Between Groups.00011.000.003125.0018704.0005399.089.768
Within Groups.000222.000.002892.0019589.0005655

Table 4: ANOVA Analysis for the Variance between the Single Index Model and the Markowitz Model of 10 Portfolios

From the conducted analysis, it can be also concluded that the F-test presents an insignificant statistical value, implying that the researcher rejected the hypothesis of a significant difference existing between portfolio selections with regards to risk in both models used in the study (Fernandez and Gomez, 2007). Hence, the hypothesis of a significant difference between the variance of the single index model and the Markowitz model was rejected (Lediot and Wolf, 2003). In the table below, the researcher provided the results of an ANOVA analysis conducted on five optimal portfolios:

ANOVA AnalysisSum of SquaresDfConditionMeanStandard DeviationStandard Error MeanFSig.
Between Groups.00011.000.004852.0036535.0007618.096.758
Within Groups.001442.000.004509.0038595.0008048

Table 5: ANOVA Analysis for the Variance between the Single Index Model and the Markowitz Model of 5 Portfolios

The results from Table 5 show that the variance between the single index model and the Markowitz model of five optimal portfolios is almost the same. Regardless of the stock number in the selected optimal portfolios, there is no significant statistical difference between the single index model and the Markowitz model.

The main finding based on the reported data is that the single index model/construction of optimal portfolios is similar to the Markowitz model with regards to the formation of specific portfolios (Bergh and Rensburg, 2008). As indicated in this study, the precise number of stocks in the constructed optimal portfolios does not impact the final result of comparing the two analysed models. The fact that these models are not significantly different from each other can prompt investors to use the most practical approach in constructing optimal portfolios (Haugen, 2001). Placing an emphasis on efficient frontiers is an important part of investors’ work, as they are focused on generating the most efficient portfolios at the lowest risk. As a result, optimally selected portfolios would be able to generate positive returns for organisations. This applies to both the single index model and the Markowitz model (Fernandez and Gomez, 2007).

Conclusion and Implications of Research Findings

The results obtained in the present study are important for various parties. Such results may be of concern to policy makers, investors as well as financial market participants. In addition, the findings generated in the study are similar to findings reported by other researchers in the field (Bergh and Rensburg, 2008). It cannot be claimed that either of the approaches has certain advantages over the other one. Even if the number of stocks is altered, this does not reflect in any changes of the results provided by the researcher in this study. Yet, the major limitation of the study is associated with the use of monthly data. It can be argued that the use of daily data would be a more viable option to ensure accuracy, objectivity as well as adherence to strict professional standards in terms of investment (Better, 2006).

In conclusion, the similarity of the single index model and the Markowitz model encourage researchers to use both models equally because of their potential to generate optimal portfolios. Moreover, the lack of significant statistical differences between the variance of the single index model and the Markowitz model can serve as an adequate basis for investors to demonstrate greater flexibility in the process of making portfolio selection decisions (Haugen, 2001). The results obtained in the study were used to reject the hypotheses that were initially presented. As previously mentioned, the conducted F-test additionally indicates that the single index model and the Markowitz model are almost similar in scope and impact (Fernandez and Gomez, 2007).

Investors should consider that portfolio selection models play an important role in determining the exact amount of risk taking while constructing optimal portfolios. Hence, investors are expected to thoroughly explore those models while they select their portfolios (Garlappi et al., 2007). Both individual and institutional investors can find the results generated in this study useful to facilitate their professional practice. A possible application of the research findings should be considered in the process of embracing new investment policies in the flexible organisational context (Bergh and Rensburg, 2008). Future research may extensively focus on the development of new portfolio selection models that may further expand the capacity of organisations to improve their performance on investment risk taking indicators.


Bergh, G. and Rensburg, V. (2008). ‘Hedge Funds and Higher Moment Portfolio Performance Appraisals: A General Approach’. Omega, vol. 37, pp. 50-62.

Better, M. (2006). ‘Selecting Project Portfolios by Optimizing Simulations’. The Engineering Economist, vol. 51, pp. 81-97.

Fernandez, A. and Gomez, S. (2007). ‘Portfolio Selection Using Neutral Networks’. Computers & Operations Research, vol. 34, pp. 1177-1191.

Garlappi, L., Uppal, R., and Wang, T. (2007). ‘Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach’. The Review of Financial Studies, vol. 20, pp. 41-81.

Haugen, R. (2001). Modern Investment Theory. New Jersey: Prentice Hall.

Lediot, O. and Wolf, M. (2003). ‘Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection’. Journal of Finance, vol. 10, pp. 603-621.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
English 101
great summery in terms of the time given. it lacks a bit of clarity but otherwise perfect.
Customer 452747, June 9th, 2021
thank you so much
Customer 452749, June 10th, 2021
Customer 452591, March 18th, 2021
Great job
Customer 452773, February 13th, 2023
Thank you!!! I received my order in record timing.
Customer 452551, February 9th, 2021
excellent job made a 93
Customer 452773, March 22nd, 2023
Thank youuuu
Customer 452729, May 30th, 2021
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
Business and administrative studies
looks good thank you
Customer 452773, March 3rd, 2023
Business and administrative studies
Excellent job
Customer 452773, March 9th, 2023
Business and administrative studies
Excellent work ,always done early
Customer 452773, February 21st, 2023
Business and administrative studies
excellent work
Customer 452773, March 9th, 2023
Customer reviews in total
Current satisfaction rate
3 pages
Average paper length
Customers referred by a friend
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes



eskişehir eskort



eskişehir eskort

Live ChatWhatsApp