Modes of Heat Transfer

DEFINITION OF HEAT TRANSFER| Heat transfer is energy in transit due to temperature difference . Whenever there exists a temperature difference in a medium or between media, heat transfer must occur. The basic requirement for heat transfer is the presence of temperature difference . There can be no net heat transfer between two mediums that are at the same temperature. The temperature difference is the driving force for heat transfer, just as the voltage difference is the driving force for electric current flow and pressure difference is the driving force for fluid flow.

The rate of heat transfer in a certain direction depends on the magnitude of the temperature gradient (the temperature difference per unit length or the rate of change of temperature) in that direction. The larger the temperature gradient, the higher the rate of heat transfer| PHYSICAL ORIGINS AND RATE EQUATIONS:It is important to understand the physical mechanisms which underlie the heat transfer modes and that we are able to use the rate equations that quantify the amount of energy being transferred per unit time.

Conduction:Conduction can be imagined as a atomic or molecular activity which involves the transfer of energy from the more energetic to the less energetic particles of a substance due to interactions between the particles. |  | Explanation: The physical mechanism of conduction is explained as follows: Consider a gas in which there exists a temperature gradient and assume that there is no bulk motion. The gas may occupy the space between two surfaces that are maintained at different temperatures, as shown in Figure 1. 2.

The temperature at any point is associated with the energy of gas molecules in proximity to the point. This energy is related to the random translational motion, as well as to the internal rotational and vibrational motions, of the molecules. | Higher temperatures are associated with higher molecular energies, and when neighboring molecules collide, as they are constantly doing, a transfer of energy from the more energetic to the less energetic molecules must occur. In the presence of the temperature gradient, energy transfer by conduction must then occur in the direction of decreasing temperature.

This transfer is evident in the Figure 1. 2. The hypothetical plane at xo is constantly being crossed by molecules from above and below due to their random motion. However, molecules from above are associated with a larger temperature than those from below, in which case there must be a net transfer of energy in the positive x- direction. Hence, the net transfer of energy by random molecular motion may be thought of as diffusion of energy. It is possible to quantify heat transfer processes in terms of appropriate rate equations.

These equations may be used to compute the amount of energy being transferred per unit time. The rate equation for heat conduction is known as Fourier’s Law. The rate equation for the one dimensional plane wall shown in Figure below, having a temperature distribution T(x) is given by | (1. 1) | The heat flux (W/m2) is the heat transfer rate in the x -direction per unit area perpendicular to the direction of transfer, and it is proportional to the the temperature gradient, dT/dx , in this direction. The proportionality constant k is a transport property known as the thermal conductivity (W/m.

K) and is a characteristic of the wall material. The minus sign is a consequence of the fact that the heat is transferred in the direction of decreasing temperature. Under the steady state conditions shown in Figure 1. 3, where the temperature distribution is linear, the temperature gradient may be expressed as | (1. 2) | and the heat flux then | (1. 3) | or | (1. 4) | This equation provides a heat flux , that is, the rate of heat transfer per unit area. The heat rate by conduction qx(W), through a plane wall of area A is then the product of the flux and the area qx= . A.

Convection takes place when energy is transferred from a surface to a fluid flowing over it as a result of a difference between the temperatures of the surface and the fluid. Convection heat transfer mode is comprised of two mechanisms * Energy transfer due to random molecular motion (diffusion) * Energy transferred by the bulk or macroscopic motion of the fluid ( advection) This fluid motion is associated with the aggregate or collective movement of the large number of molecules. Such motion, in the presence of temperature gradient, contributes to the heat transfer.

Because the molecules in the aggregate retain their random motion, the total heat transfer is then due to a superposition of energy transport by the random motion of the molecules and by the bulk motion of the fluid. Convection heat transfer may be classified according to the nature of the flow. * Forced convection takes place when the flow is caused by an external agent such as fan, pump or atmospheric winds. For example, consider the use of a fan to provide forced convection air cooling of hot electrical components on a stack of printed circuit boards. Natural convection takes place when the flow is induced by density differences caused by the temperature variations in the fluid. For example, consider heat transfer that occurs from hot components on a vertical array of circuit boards in still air. * The rate equation for convection is known as Newton’s law of cooling. This is given by | (1. 5) | * q” is the convective heat flux (W/m2). Convective heat flux is proportional to the difference between the surface and temperatures, Ts and , respectively.

The proportionality constant is termed the convection heat transfer coefficient. It depends on the surface geometry, the nature of the fluid motion, and the fluid involved. Any study of convection ultimately reduces to a study of the means by which h may be determined. Although consideration of these means is postponed to Chapter 6, convection heat transfer will frequently appear as a boundary condition in the solution of conduction problems. In the solution of such problems we presume h to be known, using typical values gven in Table. * RADIATION: Thermal radiation is energy emitted by matter that is at a finite temperature. Radiation occurs not only from solid surfaces but also from liquids and gases. Regardless of the form of the matter, the emission may be attributed to changes in the electron configurations of the constituent atoms or molecules. The energy of the radiation field is transported by electromagnetic waves. While the transfer of energy by conduction and convection requires the presence of a material medium, radiation does not. In fact, radiation transfer occurs most efficiently in a vacuum. Consider radiation transfer processes for the surface of Figure. 1. 4. Radiation that is emitted by the surface originates from the thermal energy of matter bounded by the surface, and the rate at which the energy is released per unit area (W/m2) is termed the surface emissive power E. * There is an upper limit to the emissive power, which is prescribed by the Stefan-Boltzmann law | (1. 6) | * where Ts is the absolute temperature (K) of the surface and is the Stefan-Boltzmann constant ( = 5. 67 x 10-8 W/m2K 4). Such a surface is called an ideal radiator or black body. *

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business and administrative studies
Thank you
Customer 452773, March 19th, 2023
Leadership Studies
excellent job
Customer 452773, August 26th, 2023
Business and administrative studies
excellent job
Customer 452773, March 12th, 2023
Psychology
Thank you!
Customer 452545, February 6th, 2021
Business and administrative studies
excellent job thank you Your Score 166.25/ 175- A 1. Current Culture 15% of total grade 18.37 Criterion "1. Current Culture" has textual feedback Criterion Feedback I see interesting points, though, in general they are not about the culture.
Customer 452773, June 4th, 2023
Business and administrative studies
excellent job! got an A, thank you
Customer 452773, May 24th, 2023
Human Resources Management (HRM)
excellent
Customer 452773, June 25th, 2023
Human Resources Management (HRM)
excellent, great job
Customer 452773, June 19th, 2023
Business and administrative studies
always perfect work and always completed early
Customer 452773, February 21st, 2023
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
Humanities
Thank youuuu
Customer 452729, May 30th, 2021
FIN571
excellent
Customer 452773, March 15th, 2024
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp