Lacsap’s Fractions

Lacsap’s Fractions IB Math 20 Portfolio By: Lorenzo Ravani Lacsap’s Fractions Lacsap is backward for Pascal. If we use Pascal’s triangle we can identify patterns in Lacsap’s fractions. The goal of this portfolio is to ? nd an equation that describes the pattern presented in Lacsap’s fraction. This equation must determine the numerator and the denominator for every row possible. Numerator Elements of the Pascal’s triangle form multiple horizontal rows (n) and diagonal rows (r). The elements of the ? rst diagonal row (r = 1) are a linear function of the row number n. For every other row, each element is a parabolic function of n.

Where r represents the element number and n represents the row number. The row numbers that represents the same sets of numbers as the numerators in Lacsap’s triangle, are the second row (r = 2) and the seventh row (r = 7). These rows are respectively the third element in the triangle, and equal to each other because the triangle is symmetrical. In this portfolio we will formulate an equation for only these two rows to ? nd Lacsap’s pattern. The equation for the numerator of the second and seventh row can be represented by the equation: (1/2)n * (n+1) = Nn (r) When n represents the row number.

And Nn(r) represents the numerator Therefore the numerator of the sixth row is Nn(r) = (1/2)n * (n+1) Nn(r) = (1/2)6 * (6+1) Nn(r) = (3) * (7) Nn(r) = 21 Figure 2: Lacsap’s fractions. The numbers that are underlined are the numerators. Which are the same as the elements in the second and seventh row of Pascal’s triangle. Figure 1: Pascal’s triangle. The circled sets of numbers are the same as the numerators in Lacsap’s fractions. Graphical Representation The plot of the pattern represents the relationship between numerator and row number. The graph goes up to the ninth row.

The rows are represented on the x-axis, and the numerator on the y-axis. The plot forms a parabolic curve, representing an exponential increase of the numerator compared to the row number. Let Nn be the numerator of the interior fraction of the nth row. The graph takes the shape of a parabola. The graph is parabolical and the equation is in the form: Nn = an2 + bn + c The parabola passes through the points (0,0) (1,1) and (5,15) At (0,0): 0 = 0 + 0 + c ! ! At (1,1): 1 = a + b ! ! ! At (5,15): 15 = 25a + 5b ! ! ! 15 = 25a + 5(1 – a) ! 15 = 25a + 5 – 5a ! 15 = 20a + 5 ! 10 = 20a! ! ! ! ! ! ! therefore c = 0 therefore b = 1 – a Check with other row numbers At (2,3): 3 = (1/2)n * (n+1) ! (1/2)(2) * (2+1) ! (1) * (3) ! N3 = (3) therefore a = (1/2) Hence b = (1/2) as well The equation for this graph therefore is Nn = (1/2)n2 + (1/2)n ! which simpli? es into ! Nn = (1/2)n * (n+1) Denominator The difference between the numerator and the denominator of the same fraction will be the difference between the denominator of the current fraction and the previous fraction. Ex. If you take (6/4) the difference is 2. Therefore the difference between the previous denominator of (3/2) and (6/4) is 2. ! Figure 3: Lacsap’s fractions showing differences between denominators Therefore the general statement for ? nding the denominator of the (r+1)th element in the nth row is: Dn (r) = (1/2)n * (n+1) – r ( n – r ) Where n represents the row number, r represents the the element number and Dn (r) represents the denominator. Let us use the formula we have obtained to ?nd the interior fractions in the 6th row. Finding the 6th row – First denominator ! ! ! ! ! ! ! ! ! ! ! ! – Second denominator ! ! ! ! ! ! ! ! ! ! ! ! ! denominator = 6 ( 6/2 + 1/2 ) – 1 ( 6 – 1 ) ! = 6 ( 3. 5 ) – 1 ( 5 ) ! 21 – 5 = 16 denominator = 6 ( 6/2 + 1/2 ) – 2 ( 6 – 2 ) ! = 6 ( 3. 5 ) – 2 ( 4 ) ! = 21 – 8 = 13 ! ! -Third denominator ! ! ! ! ! ! ! ! ! ! ! ! – Fourth denominator ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! – Fifth denominator ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! denominator = 6 ( 6/2 + 1/2 ) – 3 ( 6 – 3 ) ! = 6 ( 3. 5 ) – 3 ( 3 ) ! = 21 – 9 = 12 denominator = 6 ( 6/2 + 1/2 ) – 2 ( 6 – 2 ) ! = 6 ( 3. 5 ) – 2 ( 4 ) ! = 21 – 8 = 13 denominator = 6 ( 6/2 + 1/2 ) – 1 ( 6 – 1 ) ! = 6 ( 3. 5 ) – 1 ( 5 ) ! = 21 – 5 = 16 ! ! We already know from the previous investigation that the numerator is 21 for all interior fractions of the sixth row.

Using these patterns, the elements of the 6th row are 1! (21/16)! (21/13)! (21/12)! (21/13)! (21/16)! 1 Finding the 7th row – First denominator ! ! ! ! ! ! ! ! ! ! ! ! – Second denominator ! ! ! ! ! ! ! ! ! ! ! ! – Third denominator ! ! ! ! ! ! ! ! ! ! ! ! – Fourth denominator ! ! ! ! ! ! ! ! ! ! ! ! ! ! denominator = 7 ( 7/2 + 1/2 ) – 1 ( 7 – 1 ) ! =7(4)–1(6) ! = 28 – 6 = 22 denominator = 7 ( 7/2 + 1/2 ) – 2 ( 7 – 2 ) ! =7(4)–2(5) ! = 28 – 10 = 18 denominator = 7 ( 7/2 + 1/2 ) – 3 ( 7 – 3 ) ! =7(4)–3(4) ! = 28 – 12 = 16 denominator = 7 ( 7/2 + 1/2 ) – 4 ( 7 – 3 ) ! =7(4)–3(4) ! = 28 – 12 = 16 ! ! ! ! ! ! Fifth denominator ! ! ! ! ! ! ! ! ! ! ! ! – Sixth denominator ! ! ! ! ! ! ! ! ! ! ! ! denominator = 7 ( 7/2 + 1/2 ) – 2 ( 7 – 2 ) ! ! =7(4)–2(5) ! ! = 28 – 10 = 18 ! ! denominator = 7 ( 7/2 + 1/2 ) – 1 ( 7 – 1 ) ! =7(4)–1(6) ! = 28 – 6 = 22 We already know from the previous investigation that the numerator is 28 for all interior fractions of the seventh row. Using these patterns, the elements of the 7th row are 1 (28/22) (28/18) (28/16) (28/16) (28/18) (28/22) 1 General Statement To ? nd a general statement we combined the two equations needed to ? nd the numerator and to ? nd the denominator. Which are (1/2)n * (n+1) to ? d the numerator and (1/2)n * (n+1) – n( r – n) to ? nd the denominator. By letting En(r) be the ( r + 1 )th element in the nth row, the general statement is: En(r) = {[ (1/2)n * (n+1) ] / [ (1/2)n * (n+1) – r( n – r) ]} Where n represents the row number and r represents the the element number. Limitations The ‘1’ at the beginning and end of each row is taken out before making calculations. Therefore the second element in each equation is now regarded as the ? rst element. Secondly, the r in the general statement should be greater than 0. Thirdly the very ? rst row of the given pattern is counted as the 1st row.

Lacsap’s triangle is symmetrical like Pascal’s, therefore the elements on the left side of the line of symmetry are the same as the elements on the right side of the line of symmetry, as shown in Figure 4. Fourthly, we only formulated equations based on the second and the seventh rows in Pascal’s triangle. These rows are the only ones that have the same pattern as Lacsap’s fractions. Every other row creates either a linear equation or a different parabolic equation which doesn’t match Lacsap’s pattern. Lastly, all fractions should be kept when reduced; provided that no fractions common to the numerator and the denominator are to be cancelled. ex. 6/4 cannot be reduced to 3/2 ) Figure 4: The triangle has the same fractions on both sides. The only fractions that occur only once are the ones crossed by this line of symmetry. 1 Validity With this statement you can ? nd any fraction is Lacsap’s pattern and to prove this I will use this equation to ? nd the elements of the 9th row. The subscript represents the 9th row, and the number in parentheses represents the element number. – E9(1)!! ! – First element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(2)!! ! – Second element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(3)!! ! – Third element! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 1( 9 – 1) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 1( 8 ) ]} {[ 45 ] / [ 45 – 8 ]} {[ 45 ] / [ 37 ]} 45/37 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 2( 9 – 2) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 2 ( 7 ) ]} {[ 45 ] / [ 45 – 14 ]} {[ 45 ] / [ 31 ]} 45/31 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 3 ( 9 – 3) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 3( 6 ) ]} {[ 45 ] / [ 45 – 18 ]} {[ 45 ] / [ 27 ]} 45/27 E9(4)!! ! – Fourth element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(4)!! ! – Fifth element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(3)!! ! – Sixth element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(2)!! ! – Seventh element! ! ! ! ! ! ! ! ! ! ! ! ! – E9(1)!! ! – Eighth element! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! [ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 4( 9 – 4) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 4( 5 ) ]} {[ 45 ] / [ 45 – 20 ]} {[ 45 ] / [ 25 ]} 45/25 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 4( 9 – 4) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 4( 5 ) ]} {[ 45 ] / [ 45 – 20 ]} {[ 45 ] / [ 25 ]} 45/25 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 3 ( 9 – 3) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 3( 6 ) ]} {[ 45 ] / [ 45 – 18 ]} {[ 45 ] / [ 27 ]} 45/27 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 2( 9 – 2) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 2 ( 7 ) ]} {[ 45 ] / [ 45 – 14 ]} {[ 45 ] / [ 31 ]} 45/31 {[ n( n/2 + 1/2 ) ] / [ n( n/2 + 1/2 ) – r( n – r) ]} {[ 9( 9/2 + 1/2 ) ] / [ 9( 9/2 + 1/2 ) – 1( 9 – 1) ]} {[ 9( 5 ) ] / [ 9( 5 ) – 1( 8 ) ]} {[ 45 ] / [ 45 – 8 ]} {[ 45 ] / [ 37 ]} 45/37 From these calculations, derived from the general statement the 9th row is 1 (45/37)! ! (45/31)! ! (45/27)! (45/25)! (45/25)! (45/27) (45/31)! (45/37)! ! 1 Using the general statement we have obtained from Pascal’s triangle, and following the limitations stated, we will be able to produce the elements of any given row in Lacsap’s pattern. This equation determines the numerator and the denominator for every row possible.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business and administrative studies
excellent job thank you Your Score 166.25/ 175- A 1. Current Culture 15% of total grade 18.37 Criterion "1. Current Culture" has textual feedback Criterion Feedback I see interesting points, though, in general they are not about the culture.
Customer 452773, June 4th, 2023
Business and administrative studies
looks good thank you
Customer 452773, March 3rd, 2023
History
Don't really see any of sources I provided, but elsewise its great, thank you!
Customer 452697, May 8th, 2021
DATA565
The support team was late responding , my paper was late because the support team didn't respond in a timely manner. The writer of the paper finally got it right but seems there was a problem getting the revisioin to me.
Customer 452773, April 7th, 2024
LEADERSHIP
excellent job
Customer 452773, August 12th, 2023
Philosophy
Thank you
Customer 452811, February 17th, 2024
Nursing
I just need some minor alterations. Thanks.
Customer 452547, February 10th, 2021
Human Resources Management (HRM)
excellent job
Customer 452773, June 25th, 2023
Leadership Studies
excellent job
Customer 452773, July 28th, 2023
FIN571
excellent work
Customer 452773, March 1st, 2024
BUSINESS LAW
excellent job made a 93
Customer 452773, March 22nd, 2023
English 101
great summery in terms of the time given. it lacks a bit of clarity but otherwise perfect.
Customer 452747, June 9th, 2021
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp