Heart Rate Monitoring

Table of contents

Introduction

Heart rate during exercise provides a measure of cardiac load, (Borresen and Lambert, 2007) and can be refined to assess anaerobic tolerance. Anaerobic tolerance (or threshold) is defined as the amount of exercise oxygen uptake above which aerobic metabolism is supplemented by anaerobic metabolism, (Weltman, 1995) and correlates well with performance in endurance sports. (Groslambert et al., 2004)

Although blood lactate measurement is a gold standard criterion (Nikooie et al., 2009), it involves multiple instances of blood sampling, making non-invasive alternatives such as ventilation and heart rate monitoring potentially more viable.

The heart rate deflection point, which coincides with the lactate threshold, could be potentially predictive of anaerobic threshold as explored in previous studies involving long distances. In fact, it has been proposed that anaerobic threshold occurs at 85% of maximum heart rate. There has also been significant correlation between deflection heart rate and heart rate at ventilatory threshold. However, it should be noted that the direction of heart rate deflection (upward or downward) has been a controversial issue with various theories proposed, such as decreased stoke volume, increased beta-receptor sensitivity, and increased myocardial wall thickness from training. Another theory also described decreased blood pH stimulating increased sympathetic discharge and corresponding decreased parasympathetic discharge. (Carey, 2008)

A heart rate monitoring and data collection system such as the Zephyr Bioharness could prove very useful in sports science research due to its portability, ease of use and accuracy. The Zephyr Bioharness can also be used in other real-life scenarios, such as in mine rescue operations, NASA zero gravity experiments, fire training and monitoring of extreme sporting activity. (Technologies, 2011) As such, we seek to assess the potential application of the Zephyr Bioharness in estimating anaerobic tolerance, and confirming it as a reliable instrument in on-site heart rate monitoring.

Methods

Test subjects

Eleven sports studies students from the University of Hertfordshire, aged 19-24, were involved in the study (height 178.1 ± 7.7cm, weight 71.5 ± 7.5kg) which took place at Sports Village De Havilland, Hertfordshire, UK. All subjects were in good health, with no known respiratory or cardiac disease, and were instructed to abstain from food 2 hours prior to the test. The subjects were also told to abstain from alcohol or caffeine 24 hours prior to the test to avoid confounding results of the physical tests. Ethical approval had been obtained before the study was carried out.

Equipment

The Zephyr Bioharness (Version 1, ISM; Maryland, USA) can potentially monitor vital signs remotely using Bluetooth technology. These include heart rate, ECG, respiration, skin temperature, posture and relative activity. For this study, only velocity and heart rate in comparison to varying levels of physical exertion were measured.

Test conditions

Each subject was tight-fitted with one Zephyr Bioharness (to the lower chest) and one polar heart rate monitor, and made to do a series of 20-metre walks, jogs and sprints in accordance to a bleep test. Water was applied to heart rate monitors to stimulate the chest strap electrodes which sense electrical stimulation from the heart. The multistage shuttle run was timed according to a played CD (Coachwise, UK), and was used in accordance with a hand held timer. Data in the form of real-time heart rate was gathered on a Toshiba Protege laptop

A 10-minute walking test was conducted to familiarise subjects to the testing environment. Subjects then completed a six-stage shuttle run test with speeds ranging from 8-11 km/hour, lasting for about 6-20 seconds. After 3 minutes of active recovery, the subjects completed the sprint test, with 6 sprints over a distance of 20 metres and 30 seconds of active recovery in between each sprint. Subjects were assessed after the entire test was completed, with the entire procedure conducted in the same order on both test days.

Statistical analysis

Heart rate beats with a difference of 20 beats/min between the two bioharnesses were removed from the raw data. Standard deviation was used to measure variability by measuring the distance between the individual score and the mean (Mean ± SD). Typical error was used to provide an average measurement of error for each individual’s results. Pearson’s data was used to provide correlative data significance to analyse if the Zephyr Bioharness was reliable through different stages of testing.

Results

A straight line was found to best describe the heart rate-work rate relationship as the log-linear method significantly overestimated anaerobic threshold. (Carey, 2008) Heart rate was also plotted against velocity as per the Conconi test, in an attempt to elucidate a heart rate deflection point. However, due to the small sample size and lack of controlled velocity per subject in the tests, no evident deflection point was noted although an upward trend of heart rate with increased physical velocity was observed.

Walking velocity (4-6 km/hr) showed a positive change in mean heart rate (increase in 0.29 beats/min) compared to the multi-stage shuttle run and sprint exercise, which showed a decrease in heart rate (-0.41 and -0.80 beats/min respectively). The Pearson correlation coefficient showed that walking and multi-stage shuttle run velocity had strong positive correlation to heart rate (0.99 and 0.94 respectively) unlike sprint velocity (0.22). However, there was significantly high typical error (TE) in the sprint portion of the study compared to the walk and multi-stage shuttle run portions (38.31 vs 1.52 and 4.81 respectively).

VelocityDescriptive Heart Rate DataReliability Heart Rate Data
Bio 8

Mean ± SD

(beats/min)Bio 2

Mean ± SD

(beats/min)Change in mean

(beats/min)TEPearson correlation coefficient
Walk 4 – 6 km/hr99.97±14.4999.68 ±14.660.29

1.52

0.99
MSSR 8-11 km/hr155.85±20.46156.26±19.85-0.414.810.94
Sprint >18 km/hr156.82±20.71157.62±20.29-0.8038.310.22

Discussion

A low typical error of 1.52 and 3.48 in the walking test and multi-stage shuttle run respectively demonstrate potential reliability of the heart rate data, unlike the high typical error of 38.31 in the sprint test where individual results showed significant variation. This makes deriving maximum heart rate, and therefore calculating anaerobic tolerance, difficult. There was a strong positive Pearson correlation of heart rates measured by both Bioharnesses (>0.85) with an estimated standard error of <- 7 beats/min.

An increase in resting heart rate was also seen with an increase in physical velocity, as participants segued from the slow walking test to the multi-stage shuttle run, to the sprint test. However, a deterioration of reliability was observed with increased testing intensity, as mentioned earlier and seen from the plateau in the Conconi graph (Figure 1). This makes the Bioharness valid only under physical activities of low velocity, such as in walking tests.

Bioharness technology has been previously suggested to be sensitive to intensity in other studies (Wolfe et al., 2004). This was attributed to vigorous movement during activities of higher velocity such as the multi-stage shuttle run and sprint tests in this study, making the Bioharness improperly secured to the test subject. If the Bioharness could be tightly secured throughout the entire range of velocities tested without compromising optimal performance of the test subjects, it could be a valid method to monitor heart rate.(Burke and Whelan, 1987)

There also exists a possibility of the Bioharness providing erroneous results in physical tests which involve a change in direction of movement. (Welk, 2002) Human error in taking timings of the three tests, variation in extent of movement among individual test subjects during tests of higher velocity, as well as improper strapping of the Bioharness, could also contribute to experimental error. (Brage et al., 2005)

It is important to note that peak performance of the physical tests is linked to subject motivation (Dickstein et al., 1990), which may therefore require a larger and more specific group of test participants. The small sample size of study also decreases reliability of the test, due to intra-group variation and possible confounding factors in subject non-compliance to alcohol, food and caffeine abstinence.

Further physiological testing involving more variables besides heart rate, could be incorporated into future tests, with a larger pool of test subjects and automated timers, thereby decreasing the impact of human error. Measurement of individual organ performance, the heart for example, may not be reflective of resultant cardiopulmonary and musculoskeletal performance. (Rao et al., 2012) Heart rate recovery is an indirect marker of autonomic function and could be included in a future study measuring post-activity heart rate. This would reflect the body’s capacity to respond to exercise, (Borresen and Lambert, 2007) providing a follow-up from the current study which merely measures real-time heart rate and allow for an integrated observation of the effects of exercise on the individual.

A heart rate performance curve, which is non-linearly related to work load, can be used too if it can be shown to be fairly uniform upon validation of the heart rate turn point. This occurs at maximal lactate steady state, but has yet to be substantiated with data from large-scale studies. (Hofmann and Pokan, 2010) A controlled velocity experiment for each individual could also have been conducted to better calibrate the Conconi graph, thereby allowing for the observation of a heart rate deflection point.

In conclusion, this study has been shown to be inadequate in proving the reliability of the Bioharness as an effective heart rate monitoring device. More robust testing is needed before the Bioharness is recommended as an on-site testing equipment for sporting professionals.

References

BORRESEN, J. & LAMBERT, M. I. 2007. Changes in heart rate recovery in response to acute changes in training load. Eur J Appl Physiol, 101, 503-11.

BRAGE, S., BRAGE, N., FRANKS, P. W., EKELUND, U. & WAREHAM, N. J. 2005. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr, 59, 561-70.

BURKE, M. J. & WHELAN, M. V. 1987. The accuracy and reliability of commercial heart rate monitors. Br J Sports Med, 21, 29-32.

CAREY, D. 2008. A comparison of different heart rate deflection methods to predict the anaerobic threshold. european journal of sports science, 8, 315-323.

DICKSTEIN, K., BARVIK, S., AARSLAND, T., SNAPINN, S. & KARLSSON, J. 1990. A comparison of methodologies in detection of the anaerobic threshold. Circulation, 81, II38-46.

GROSLAMBERT, A., GRAPPE, F., BERTUCCI, W., PERREY, S., GIRARD, A. J. & ROUILLON, J. D. 2004. A perceptive individual time trial performed by triathletes to estimate the anaerobic threshold. A preliminary study. J Sports Med Phys Fitness, 44, 147-56.

HOFMANN, P. & POKAN, R. 2010. Value of the application of the heart rate performance curve in sports. Int J Sports Physiol Perform, 5, 437-47.

RAO, R. P., DANDURAN, M. J., LOOMBA, R. S., DIXON, J. E. & HOFFMAN, G. M. 2012. Near-infrared spectroscopic monitoring during cardiopulmonary exercise testing detects anaerobic threshold. Pediatr Cardiol, 33, 791-6.

TECHNOLOGIES, Z. 2011. Application notes and white papers [Online]. Available: http://www.zephyr-technology.com/resources/whitepapers [Accessed 2 June 2012.

WELK, G. 2002. Physical Activity Assessment for Health-Related Research, USA, Human Kinetics Publishers.

WELTMAN, A. 1995. The blood lactate response to exercise, Champaign, Illingworth, R.

WOLFE, B. L., LEMURA, L. M. & COLE, P. J. 2004. Quantitative analysis of single- vs. multiple-set programs in resistance training. J Strength Cond Res, 18, 35-47.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
ACC/543: Managerial Accounting & Legal Aspects Of Business
EXCELLENT JOB
Customer 452773, January 10th, 2024
History
Looks great and appreciate the help.
Customer 452675, April 26th, 2021
Human Resources Management (HRM)
excellent, great job
Customer 452773, June 19th, 2023
Criminal Justice
This has been the greatest help while I am recovering from an illness. Thank your team so much.
Customer 452671, May 2nd, 2021
Leadership Studies
excellent job as always
Customer 452773, September 2nd, 2023
Business and administrative studies
Excellent job
Customer 452773, March 9th, 2023
BUSINESS LAW
excellent job made a 93
Customer 452773, March 22nd, 2023
History
Don't really see any of sources I provided, but elsewise its great, thank you!
Customer 452697, May 8th, 2021
10th grade English
very good
Customer 452773, March 26th, 2023
LEADERSHIP
excellent job
Customer 452773, August 12th, 2023
BUSINESSADMINECO535
excellent work
Customer 452773, October 6th, 2023
Business and administrative studies
Thank you
Customer 452773, March 19th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp