Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

Abstract: A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the p axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints.

In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail.

Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. Keywords: three-point method; deflection estimation; relative deflection; absolute deflection; grating eddy current sensor (GECS) OPEN ACCESS Sensors 2012, 12 9988 1. Introduction. After a bridge is put into use, gradual deterioration is inevitable because of loading, temperature changes or other environmental factors. In order to guarantee the safety and durability of those bridges which are expensive and closely related with people’s livelihood, long-term and continuous structural health monitoring is an essential part of the maintenance management. Among the various structural performance evaluations, vertical deflection is an important parameter that can directly and effectively indicate a bridge’s behavior.

In terms of instrumentation for deflection estimation, there are contact and non-contact deflection estimation methods. Traditional displacement sensors such as mechanical dial gauges or linear variable differential transducers (LVDTs) are used in contact measurement, through which static or real-time displacement values can be obtained directly or fed into a computer for processing and displaying via a data cable. This method, however, requires access under the bridge and installation of a temporary supporting system to mount sensors, which is time consuming and not very efficienct.

In addition, it might even be unavailable when bridges are over rivers, highways or have high clearance. Another contact sensor is the fiber optic Bragg-grating (FBG) sensor through which the deflection is calculated from the measured strain data and displacement-strain relationship [1,2]. In this way, however, the calculated displacement from strain data is sensitive to noise, and the sensors are expensive and must be embedded into the structure, which to a certain degree is difficult for bridges in service.

To cope with those inconveniences in contact measuring methods, various non-contact approaches have been proposed. Based on the detection of the Doppler shift of the laser light, a laser Doppler vibrometer (LDV) equipped with displacement and velocity signal decoders can measure both bridge deflection and vibration simultaneously [3]. In this way, a static reference point (usually underneath the bridge) is needed for device mounting, and the device should be attended, which limits it’s usability for long-term monitoring.

Among image methods, dynamic deflection with high resolution of the bridge can be obtained through using digital image processing techniques [4], while deflection distribution from the images of the bridge girder surface recorded by a digital camera before and after deformation can be evaluated by digital image correlation techniques [5], and digital close-range terrestrial photogrammetry (DCRTP) can measure the spatial coordination in three-dimensions [6,7].

Like the LDV, devices such as video cameras used in image methods cannot be left unattended and they are easily affected by weather conditions. Use of a Global Positioning System (GPS) can provide spatial locations of the measuring points on the bridge in real-time by comparing with a continuing operational reference station (CROS). It offers a long-term monitoring approach without being affected by climatic factors [8,9], but due to its relatively low accuracy, it is only applied to those bridges with significant deformations.

All the non-contact methods mentioned above, although they differ in instrumentation, have one thing in common, a static reference point or CROS that is kept a certain distance away from the bridge is selected for installation of the measuring device, otherwise measurements cannot be carried out. Another method is using inclinometers which can be installed on the bridge directly along a line paralleling the bridge p axis [10,11], and both static and dynamic deflection time history curves can be calculated through curve-fitting technology based on the accurate angle records of the inclinometers.

An outstanding feature of the inclinometer is that static reference Sensors 2012, 12 9989 points mentioned above are no longer needed. This approach reduces the dependence on environmental conditions and it is suitable for long-term monitoring. To avoid those deficiencies in conventional estimating deflection methods mentioned above, a novel three-point deflection estimation method is presented in this paper. Measuring points along lines paralleling the bridge p axis are chosen equidistantly.

Among these measuring points, every three adjacent measuring points are defined as a measuring unit in which a straight connecting bar linking the two endpoints is taken as a relative reference line. Relative deflection of the mid-measuring point relative to the intermediate point of the connecting bar on which a displacement sensor is fixed can be measured, and thus the absolute deflection of each measuring point can be calculated from the relative deflections of all the measuring units.

Compared with the contact and non-contact methods mentioned above, only real spatial positions of the measuring points are taken as relative references without any other static reference points. Moreover, the selected displacement sensor is the grating eddy current absolute position sensor (GECS) which is different from traditional eddy current sensors based on vertical characteristics [12,13]. Since the structure of grating reflective conductors is adopted, the measurement range is extended but without compromising the accuracy.

In addition, as an inductive sensor, the GECS is waterproof and dustproof in principle, thus it can work under bad weather conditions, which makes it ideal for long-term monitoring. In this paper, both the principles of the three-point method and displacement measurement of the GECS are presented. Then, this three-point method for deflection estimation is verified in a simply supported girder bridge model in the laboratory. Comprehensive static and dynamic experiment results on the laboratory tests demonstrate this method is effective and offers an alternative way for bridge deflection estimation.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
FIN571
excellent
Customer 452773, March 15th, 2024
DATA565
The support team was late responding , my paper was late because the support team didn't respond in a timely manner. The writer of the paper finally got it right but seems there was a problem getting the revisioin to me.
Customer 452773, April 7th, 2024
Management
Love this writer!!! Great work
Customer 452597, April 5th, 2021
Criminal Justice
The paper was not accused of plagiarism and was written very well. I will let you know the grade once it is graded. Thank you
Customer 452671, April 26th, 2021
FIN571
excellent work
Customer 452773, March 1st, 2024
Human Resources Management (HRM)
excellent
Customer 452773, July 11th, 2023
Business and administrative studies
excellent paper
Customer 452773, March 3rd, 2023
Leadership Studies
excellent job
Customer 452773, August 3rd, 2023
Business and administrative studies
perfect
Customer 452773, February 23rd, 2023
Business and administrative studies
Excellent job
Customer 452773, March 9th, 2023
Business and administrative studies
excellent job
Customer 452773, March 12th, 2023
Business and administrative studies
Thank you
Customer 452773, March 19th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp