Developments In Direct Reduced Iron

Table of contents

Developments In Direct Reduced Iron ( DRI )

Direct reduced Fe ( DRI ) is produced through the solid province decrease of Fe oxides derived from Fe ore or electric discharge furnace ( EAF ) mulcts for the usage as a virgin Fe beginning in the EAF or basic O furnace ( BOF ) processes. Virgin Fe beginnings are needed in the EAF procedure to thin the remainders ( Cu, Ni, Cr, Mo, or Va ) nowadays from old steel doing operations in the bit steel used as the primary natural stuff used in the EAF. DRI is produced in many different procedures utilizing several different fuels and different provender stocks. The DRI processes use several reaction vass including shaft furnaces, rotary fireplace furnaces, fluidized bed reactors, traveling bed reactors, and rotary kilns. The fuels used in the procedures are chiefly coal or natural gas, these fuels are used to make a reduction ambiance and elevated temperature to make a more favourable reaction. The quality of the DRI is measured by the sum of metallic Fe ( Fe or Fe3C ) is present in the merchandise. This figure is called metallization and is reported in a per centum of the entire mass of the merchandise. The merchandises of the DRI procedures are either pelletized into DRI or briquetted into hot briquetted Fe ( HBI ) .

The decrease of the Fe ore or EAF mulcts takes topographic point in several reactions that cut down the Fe oxides to metallic Fe ( eq. 1 and 2 ) . The reduction gases are produced by burning natural gas or a C beginning so adding the heated burning merchandises to the reaction vass.

Fe2O3 + 3H2 ( g ) > 2Fe + 3H2O ( combining weight. 1 )

Fe2O3 + 3CO ( g ) > 2Fe + 3CO2 ( combining weight. 2 )

Hydrogen and C monoxide are formed from burning natural gas, while merely C monoxide is formed when coal or coke is combusted. The difference between the procedures is how the provender stock is exposed to the burning gases.

The most common type of reaction vas is the shaft furnace where the provender stock is fed into the top of the furnace so dropped through the vas to be exposed to the reduction gasses so extracted from the underside of the furnace. The conceiver of utilizing the shaft furnace for DRI production is the Midrex corporation and is known as the Midrex Process. The Midrex procedure uses a Reformed natural gas as the decrease gas and requires the usage of pelletized Fe ore as a provender stock. The natural gas is combusted in a reforming vas so fed into the shaft furnace where it is assorted with extra natural gas and O to make some more chemical energy for the procedure. The fluke gas is so fed through a station burning chamber and the energy extracted from station burning is used to preheat the provender gas. This gas is so fed to a bag house where it is scrubbed before being reintroduced to the ambiance.

This procedure creates chiefly DRI pellets due to the provender stock being pelletized Fe ore and at that place non being a demand to alter the geometry through briquetting. A mistake of the Midrex procedure is its dependance on pelletized ore. The procedure requires the provender stock to incorporate no more than 3 % mulcts. The DRI pellets produced have a high metallization of 95 % on norm, doing it the highest quality DRI. The usage of the station burning allows the Midrex procedure to derive the bulk of the available energy and is what has made it favourable for the bulk of world-wide DRI production

A faster production method and 1 that has more flexibleness than the shaft furnace is the rotary fireplace furnace or the Fastmet procedure. The rotary fireplace furnace is a uninterrupted operation that feeds stuff into a revolving furnace that passes the stuff through the reduction atmosphere so removes the stuff near when it completes the full rotary motion. Unlike the Midrex procedure the Fastmet procedure uses mulcts as a feedstock. This allows for the recycling of EAF mulcts and mill dust that would be otherwise disposed of as a risky stuff. The Fastmet procedure uses a C cut downing agent and O burners. The C can be from legion beginnings such as coal, C bearing wastes, and coke. The procedure is seldom run utilizing coke due to the high cost of the coke and the procedure being capable of running on lower quality C mixes. The procedure requires a pelletizing or a briquetting operation due to the provender stock being mulcts. The full procedure requires between six and twelve proceedingss to finish. The rotary fireplace furnaces produce a direct reduced Fe with a metallization runing from 85-92 % depending on the quality of the provender stock.

Fluidized bed reactors are a batch reactor that introduces the stuff into the reactor so the reduction gasses are fed into the underside of the vas with adequate force per unit area to drift the provender stuff. This natation of the provender stuff allows for all of the surface country of the stuff to be exposed to the reduction gasses. There are several signifiers of fluidized bed reactors being used in the market today. The difference between the reacting vass is the figure of responding vass and the type of fuel used to making the reduction gases. The first type of fluid bed reactor is the Finmet procedure using Fe ore mulcts or EAF dust as a provender stuff and natural gas as a cut downing fuel. This procedure uses up to a four phase reactor with the progressive phases utilizing a higher gas speed and a lower reaction clip to derive between 91 % and 93 % metallization ( figure 3 ) . The Finmet procedure requires a briquetting operation because the provender stock is mulcts but because of necessitating a high pureness natural gas fuel it produces a really low residuary HBI.

The following two procedures, Circofer and Circored, both feature a two phase fluidized bed reactor with the first phase being a short keeping clip vas with a high gas speed and the 2nd phase a long keeping clip with a low gas speed  . The difference between the two is that the Circofer procedure uses metallurgical coal for a fuel while the Circored procedure uses natural gas. Both of these reach an mean 92 % metallization and provender pellets.

Hsysla steel developed a traveling bed reactor to make DRI  . The Hyl procedure provenders lump Fe into the procedure and a high H content reformed natural gas. The high H is created by reforming with a nickle-based accelerator. The Hyl procedure uses an elevated temperature and force per unit area to increase the processing clip for the reactions. The high H and the elevated temperature and force per unit area create a high quality DRI with 93 % mean metallization.

The concluding reactor vas is the Allis Chalmers controlled Atmosphere Reactor ( ACCAR ) . The ACCAR uses a counter flow rotary kiln. The rotary kiln procedure uses a low quality but extremely reactive coal to make cut downing gasses . The rotary kiln produces a DRI with a 92 % metallization. The responding vas does non use any of the station burning in the procedure but station burning vass have been added to the procedure to make adequate energy to power the full installation and add some back to the grid.

With DRI being produced in many different treating methods there are some cardinal characteristics that set some appart from the others. The rotary kiln, shaft furnace, and the traveling bed reactor vass produce the highest metallization. The rotary fireplace furnace has the fastest procedure clip. The most popular on the market right now is the Midrex shaft furnace with about 60 % of the market portion of DRI production  . DRI is a stuff that EAF operations have come to depend on and will go on to increase usage due to the high cost of hog Fe and the continued recycling of bit steel.

References

  1. Bresser, W. , & A ; Weber, P. ( 1995 ) . Circored and circofer: State of the art Technology for low cost direct decrease. Iron Steel Eng. ( USA ) Vol. 72, no 4, pp. 81-85.
  2. Energiron. ( n.d. ) . HP- HYL Process Description. Retrieved December 7, 2009, from Energiron Corperate Website: hypertext transfer protocol: //www.energiron.com/tour/HYL % 20DR-Minimill % 20QTVR % 20tour/files/supportdocs/dri/pressprocess.pdf
  3. Kobe Steel, LTD. ( n.d. ) . FastMet Process. Retrieved Decemeber 7, 2009, from Kobelco, Kobe Steel LTD: hypertext transfer protocol: //www.kobelco.co.jp/p108/fastmet/indexe.htm
  4. Kobelco. ( n.d. ) . Fastmet Process Flow. Retrieved December 7, 2009, from Kobelco Corperation Website: hypertext transfer protocol: //www.kobelco.co.jp/english/topics/2008/10/fastment_process_flow.pdf
  5. Lepinski, J. A. ( 1980 ) . THe ACCAR System and its Application to Direct Reduction of Iron Ores. Iron Steel Eng Vol. 57, no. 12, pp. 25-31.
  6. Lopez, G. G. , & A ; Noriega, E. ( 2008, December ) . InTech Hot Fe. Retrieved December 7, 2009, from Emerson Process Management: hypertext transfer protocol: //www.easydeltav.com/news/viewpoint/InTech1208.pdf
  7. Lopukhov, G. A. ( 2003 ) . The ‘Finmet ‘ engineering. Elektrometall Vol. 1, pp 43-44
  8. Midrex Corp. ( 2009, April 1 ) . 2008 World Direct Reduced Statistics. Retrieved December 7, 2009, from Midrex Corperate Website: hypertext transfer protocol: //www.midrex.com/uploads/documents/MIDREXStatsBook2008.pd
  9. Quintero Yanez, D. ( 1992 ) . Development of Thursday Use of HYL DRI in the Electric Arc Furnace. 4th European Electric Steel Congress, ( pp. pp 273-283 ) . Madrid ; Spain
  10. Schutze, W. R. ( n.d. ) . HBI – Hot Briquetting of Direct Reduced Iron. Retrieved December 7, 2009, from Koppern Corperation Web site: hypertext transfer protocol: //www.koeppern.de/download/11_7.pdf
  11. Tanaka, H. , Harada, t. , & A ; Yoshida, S. ( 2005 ) . Development of Coal-Based Direct Reduction Ironmaking Process. SEAISI Quarterly Vol 34, Number 4, ppp 26-33.
  12. Weber, P. , Hirsch, M. , Bresser, W. , & A ; Husain, R. ( 2009 ) . Circofer, A Low Cost Approach to DRI production. Retrieved December 7, 2009, from Hot Briqetted Iron Association: hypertext transfer protocol: //www.hbia.org/Technical/openpdf.cfm? filename=DRProcess/1994-1DR.pdf

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business and administrative studies
excellent paper
Customer 452773, March 3rd, 2023
ACC543MANAGERIALACCOUNTINGANDLEGALASPECTS
excellent
Customer 452773, January 25th, 2024
Business and administrative studies
perfect
Customer 452773, February 23rd, 2023
Criminal Justice
The paper was not accused of plagiarism and was written very well. I will let you know the grade once it is graded. Thank you
Customer 452671, April 26th, 2021
English 101
IThank you
Customer 452631, April 6th, 2021
Leadership Studies
awesome work as always
Customer 452773, August 19th, 2023
FIN571
excellent work
Customer 452773, March 1st, 2024
Business and administrative studies
excellent work
Customer 452773, March 9th, 2023
Leadership Studies
excellent job
Customer 452773, August 3rd, 2023
Business and administrative studies
looks good thank you
Customer 452773, March 3rd, 2023
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
Business and administrative studies
Excellent job
Customer 452773, March 17th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp