Alum Synthesis

Alum Synthesis: The Chemical Process of Recycling Aluminum Introduction By recycling aluminum cans, the costs and energy savings are dramatically more resourceful and efficient than producing aluminum from what it is naturally found in, bauxite ore. The process of recycling aluminum to produce potassium aluminum sulfate, a common alum, will be done through a serious of chemical reactions. Through this reaction, percent yield will be determined. Materials and Methods The mass of a 250 mL beaker is measured, and . 9 to 1. 2 grams of aluminum can pieces are added to the beaker. The mass of the beaker and aluminum pieces is recorded.

These two masses are then used to determine the initial mass of aluminum being reacted in this experiment. 50 mL of 1. 4 M KOH is then added to the beaker and placed upon a hot plate under a fume hood to fumigate any escaping gases during the reaction, which should take no longer than 30 minutes. The heat from the hot plate speeds the reaction, and the reaction mixture must be kept no lower than 25 mL by adding distilled water. An aspirator is assembled by using a suction flask, clamp, ring stand, rubber tubing, funnel, and filter paper to filter the reaction mixture once the first reaction is complete.

Feature Article – 

The filter paper is then wetted, the vacuum source is turned on, and the mixture is poured through the filter, using 5 mL of distilled water to rinse the beaker. The filter will catch all the dark filtrate from the aluminum can pieces, and the suction flask will contain a clear (transparent) solution. The solution is then transferred to a clean 250 mL beaker, and the suction flask is rinsed with 10 mL distilled water to insure all the remaining solution is transferred to the clean beaker. The beaker is placed in an ice bath to cool the solution, filling the beaker three fourths full with ice and cold water. 0 mL of 6. 0 M sulfuric acid is measured and slowly added to the mixture, using a stirring rod to mix. Heat the mixture on a hot plate if any solids begin to develop in the mixture. Using a 1 L plastic beaker, prepare another ice bath and place the beaker containing the reaction mixture in the ice bath. Once in the ice bath, the alum crystals forming in the mixture will begin to precipitate. To help the process of crystal formation, use the stir rod to scrape the sides of the beaker and form an alum seed crystal. Reassemble a clean vacuum filter, and filter the crystals onto the filter paper.

Get as much of the precipitated crystals out of the beaker and then rinse the beaker twice with 10 mL of 50% ethanol solution to transfer all the crystals to the beaker. Once the alum crystals have dried, measure the mass of a clean 250 mL beaker and then measure the mass of the beaker containing the alum crystals. Results and Discussion The first reaction to begin the alum synthesis process is when aluminum and potassium hydroxide are combined and water and heat are added during the reaction. The result is an ion called “aluminate” with an excess of hydrogen gas.

This type of reaction is a redox (reduction-oxidation) reaction, where the aluminum metal is oxidized to aluminum with an oxidation number of +3 and the hydrogen in potassium hydroxide or in water is reduced from an oxidation number of +1 to zero in hydrogen gas. The balanced chemical equation for this reaction is: 2Als+ 2KOHaq+ 6H2Oliq>2KAlOH4aq+ 3 H2g During this reaction, the colorless mixture potassium hydroxide and aluminum pieces turned a dark, ashy gray as heat was applied and the aluminum can pieces dissolved. The heat sped the reaction, and within thirty minutes all the aluminum pieces were dissolved, leaving behind aluminate.

In the second reaction, the filtered aluminate solution is mixed with sulfuric acid once the solution has cooled. After stirring for several minutes, crystals began to form. The crystalizing liquid started thickening and appeared to be white. The product of this reaction is aluminum hydroxide, potassium sulfate, and water. The fully balanced chemical equation is: 2 KAl(OH)4(aq) + H2SO4(aq) >2Al(OH)3(s) + 2 H2O(liq) + K2SO4(aq) This equation represents a metathesis (precipitation) reaction where all the elements and groups recombine and a precipitate, aluminum hydroxide, is formed.

As more sulfuric was added, the precipitate began to dissolve, thus causing the third reaction. The solution contains aluminum, potassium, and sulfate ions now. The balanced chemical equation is: 2 Al(OH)3(s) + 3 H2SO4(aq) >Al2(SO4)3(aq) + 6 H2O(liq) This type of reaction is a metathesis (acid-base) reaction where, once again, the elements and groups recombine themselves. The product of this reaction is aluminum sulfate and water. The solution continued to cool and crystals began to form. The last reaction resulted in a hydrated potassium aluminum sulfate, and crystals of this compound formed slowly. Seed crystals” developed and more alum deposited causing the crystals to expand. The balanced chemical reaction is: Al2(SO4)3(aq) + K2SO4(aq) + 24 H2O(liq) >2 KAl(SO4)2•12 H2O(s) This would be considered a combination reaction because the three reactants combined to form one product, hydrated potassium aluminum sulfate. The overall balanced chemical reaction for this experiment is: 2Al(s)+2KOHaq+4H2SO4(aq)+22H2O(liq) >2 KAl(SO4)2•12H2O(s) + 3 H2(g) At the start of the experiment, 1. 01 grams of aluminum can pieces were used. After forgoing several reactions, 4. 19 grams of alum were recovered.

Theoretically, 17. 76 grams of alum should have been recovered. This gives a percent yield of 24. 0%. Human error was definitely the main factor as to why the percent yield is not anywhere close to 100%. My lab partner and I did have a misunderstanding with one of the steps in the instructions; instead of placing the beaker in an ice bath during reaction three, we thought the directions said to put ice directly into the reaction mixture. This may have caused some error in the cooling process of the mixture, and may have not enabled all the crystals to form properly.

We may have also not waited long enough for all the crystals to form. Also, some of the crystals may have gotten lost while being transferred from the beaker, to the aspirator, and then to another beaker to be measured. These factors are reasonable as to why the actual yield of alum that resulted in the experiment were not accurate with the theoretical yield of alum. Conclusion Through a series of reactions, it is understood that aluminum can be chemically reacted to result in the synthesis of alum. The success of the experiment proves the reasoning of the process of recycling aluminum.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Social Work and Human Services
Great work I would love to continue working with this writer thought out the 11 week course.
Customer 452667, May 30th, 2021
Leadership Studies
excellent job
Customer 452773, August 3rd, 2023
Business and administrative studies
Thank you for your hard work
Customer 452773, October 19th, 2023
Leadership Studies
awesome work as always
Customer 452773, August 19th, 2023
Humanities
Thank youuuu
Customer 452729, May 30th, 2021
FIN571
excellent work
Customer 452773, March 1st, 2024
History
Looks great and appreciate the help.
Customer 452675, April 26th, 2021
History
Don't really see any of sources I provided, but elsewise its great, thank you!
Customer 452697, May 8th, 2021
Human Resources Management (HRM)
excellent job
Customer 452773, June 25th, 2023
Business and administrative studies
looks good thank you
Customer 452773, March 3rd, 2023
Criminal Justice
The paper was not accused of plagiarism and was written very well. I will let you know the grade once it is graded. Thank you
Customer 452671, April 26th, 2021
BUSINESSADMINECO535
excellent work
Customer 452773, October 6th, 2023
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp