Absorbance and Spectrophotometry

Table of contents

Abstract

This was an investigation into the effects of different wavelengths of light on methylene blue and carmine red on the absorbance value on a spectrophotometer. A spectrophotometer is used to measure light intensity by emitting a single light source through a cuvette of coloured solution. The particles in the solution, which are coloured, absorb the light depending on how concentrated it is and this produces an electronic reading from the photometer which is the absorbance value.

The maximum absorption was found for both solutions and was used to calculate the molar extinction coefficient of methylene blue. An unknown concentration of methylene blue was calculated by using graphs produced in the dilution experiments prior. The results produced supported Beer’s Law because the absorbance was directly proportional to the concentration, and so, we can be assured that the concentration of the unknown methylene blue solution calculated is relatively accurate.

Introduction

A spectrophotometer is used to measure the absorbance of light by coloured solutions.

The absorbance value is produced by a photometer that compares the light detected with a blank cuvette (a cuvette containing just water/clear colourless solvent, which should be 0), with the amount of light detected with a test solution – in this case, methylene blue or carmine red. Using Beer’s Law, we know that the absorbance is directly proportional to the concentration, therefore, knowing the absorbance of a solution can be very useful as the concentration of the solution can be found by substituting known values into the equation:

Absorbance = k c t

Where: k = constant

c = concentration of absorbing molecules

t = thickness of the absorbing layer

The aims of this experiment were to use solutions methylene blue and carmine red to confirm that Beer’s Law is true by finding the maximum absorption value for each solution and then using this, find the absorption of methylene blue solution at various dilutions. By plotting these results on a calibration curve (concentration against absorbance), this allows the experimenter to read the concentration at a particular absorbance directly, such as the unknown concentration of methylene blue.

Method

A spectrophotometer was used throughout this experiment.

Results

After finding the absorption for 0. 005% methylene blue solution and 0. 0005% carmine red solution at different wavelengths of light, we plotted a graph to show our findings to make it easier to see what region of wavelength the maximum absorption would occur at. Please refer to figure 1. From this graph, we can see that the maximum absorption for methylene blue is around 650nm-675nm as the peak on the line for methylene is around these values; for carmine red, we can see that the maximum absorption for carmine red is 500-550nm. To obtain a more accurate wavelength value, I placed more cuvettes of methylene blue and carmine red around their regions of maximum absorption.

After finding the absorption values around each region, I plotted the findings of each solution on separate graphs to show the maximum absorption value. Figure 2 shows that the maximum absorption of methylene blue is 665nm because this has the peak absorption of 0. 965. However, this is not as accurate value as it could be because the spectrophotometer did not go to more accuracy than 5nm. From Figure 3, we can see that the maximum absorption of carmine red is 0. 207 at wavelength 520nm as this is the peak on the graph.

Maximum Absorption at 0. 0005%
Methylene Blue Carmine Red
0. 965 0. 207

After we found the maximum absorption for methylene blue, 0. 965, at 665nm, we made up various dilutions of methylene blue and put each solution through the spectrophotometer at wavelength 665nm to find the molar extinction coefficient. I plotted these results on a graph (figure 6) and did the line of best fit through the points to find the gradient, which is the molar extinction coefficient. Figure 4. Graph showing dilutions of methylene blue and the absorptions each solution gives

The black line in figure 4 represents the regression line. We can use this to find the concentration of the unknown concentration of methylene blue solution by drawing a tangent to the regression line at absorbance 0. 262 (where the unknown absorbed) and reading down from that point on the graph to the concentration. The concentration of the unknown methylene blue is 4. 4 x 10-6 mol dm-3. We can find the molar extinction coefficient by substituting values of absorbance and the concentration of the unknown concentration of methylene blue into Beer’s laws equation.

Absorbance = k c t k = absorbance / c t k = 0. 262 / 4. 4 x 10-6 x 1 k = 59545 mol dm-3 cm-3

Therefore, k, the molar extinction coefficient is 59545 mol dm-3 cm-3.

Discussion

The main objectives of this experiment were to find the unknown concentration of methylene blue by using a spectrophotometer. I found the maximum absorption for methylene blue and carmine red (please refer to figure 1) and using this I determined a more accurate maximum absorption value for each solution by taking further readings around the peak of each line to determine the maximum.

However, the findings of maximum absorption for methylene blue and carmine red may not be as accurate as we think because there are extraneous variables that we can not necessarily control. One is that the outside of the cuvette may have been dirty (however, this was controlled to an extent as I wiped each side down of the cuvette with a paper towel before placing it in the spectrophotometer); another variable is that the dial on the spectrophotometer only measured in wavelength intervals of 5nm, and so, we could not get more accurate readings than the ones we concluded with.

From figure 1, we can also see that high (maximum) absorptions for carmine red occur at around 475nm-550nm. This is because the light absorbs most light at this wavelength, and therefore, reflects light at approximately 675nm-725nm which are the wavelengths of the colour red, so we see a red solution. The same can be applied to methylene blue solution because we can see from figure 1 that high absorptions for methylene blue occur around 600nm-675nm – the light absorbs most colours at this wavelength and reflects light at approximately 400nm-450nm which are the wavelengths of the colour blue, so we see a blue solution.

We could use the maximum absorption of methylene blue found to make dilutions of methylene blue with water to plot a graph proving that Beers Law is true – that the absorbance is directly proportional to the concentration. This is confirmed by the graph produced as the line of best fit is accurate and goes through the origin.

Appendix

Finding the maximum absorbance:

Wavelength/nm Absorption Absorption
Methylene Blue Carmine Red
350 0. 33 0. 156
375 0. 015 0. 018
400 0. 015 0. 046
425 0. 018 0. 048
450 0. 006 0. 127
475 0. 029 0. 093
500 0. 041 0. 65
525 0. 040 0. 186
550 0. 077 0. 144
575 0. 186 0. 068
600 0. 476 0. 039
625 0. 622 0. 028
650 0. 800 0. 005
675 0. 95 0. 013
700 0. 102 0. 004

More accurate values of methylene blue: More accurate values of carmine red:

Methylene Blue
Wavelength/nm Absorption
630 0. 623
640 0. 679
655 0. 885
660 0. 929
665 0. 965
670 0. 913
Carmine Red
Wavelength/nm Absorption
510 0. 205
515 0. 204
520 0. 207
530 0. 191
540 0. 169

The table below shows the dilutions and the absorbance values of methylene blue at 665nm:

Tube Water: Methylene Blue (ml) Absorption Concentration of methylene blue in water/mol dm-3
1 4:1 0. 171 3. 13 x 10-6
2 3:2 0. 376 6. 26 x 10-6
3 2:3 0. 595 9. 9 x 10-6
4 1:4 0. 762 12. 51 x 10-6
5 0:5 0. 963 15. 64 x 10-6
Blank 5:0 0. 000 0

Unknown solution absorbance: 0. 262

The formula mass of methylene blue: 319. 6

Working out the concentration of methylene blue from %:

  1. 0. 0001% methylene blue so, 100/0. 001 = 1000000 so, 1/1000000 = 1 x 10-6 g cm-3 so, conc. = 1 x 10-6 g cm-3 / 319. 6 g mol-1 = 3. 13 x 10-6 mol dm-3
  2. (3. 13 x 10-6) x 2 = 6. 26 x 10-6 mol dm-3
  3. (3. 13 x 10-6) x 3 = 9. 39 x 10-6 mol dm-3
  4. (3. 13 x 10-6) x 4 = 12. 51 x 10-6 mol dm-3
  5. (3. 13 x 10-6) x 5 = 15. 64 x 10-6 mol dm-3
  • Figure 1. Methylene blue and carmine red’s absorption at regular intervals of wavelengths
  • Figure 2. More accurate wavelengths to find the max. absorption for methylene blue
  • Figure 3. More accurate wavelengths to find the max. absorption for carmine red

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with MyStudyWriters
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business and administrative studies
excellent work
Customer 452773, March 9th, 2023
Business and administrative studies
excellent work
Customer 452773, March 12th, 2023
Data 564
excellent work
Customer 452773, April 11th, 2024
Human Resources Management (HRM)
excellent
Customer 452773, July 11th, 2023
English 101
IThank you
Customer 452631, April 6th, 2021
History
Don't really see any of sources I provided, but elsewise its great, thank you!
Customer 452697, May 8th, 2021
Psychology
Thank you!
Customer 452545, February 6th, 2021
DATA565
The support team was late responding , my paper was late because the support team didn't respond in a timely manner. The writer of the paper finally got it right but seems there was a problem getting the revisioin to me.
Customer 452773, April 7th, 2024
Business and administrative studies
always perfect work and always completed early
Customer 452773, February 21st, 2023
Management
Love this writer!!! Great work
Customer 452597, April 5th, 2021
Business and administrative studies
excellent job! got an A, thank you
Customer 452773, May 24th, 2023
fin571
EXCELLEN T
Customer 452773, March 21st, 2024
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Close

Sometimes it is hard to do all the work on your own

Let us help you get a good grade on your paper. Get professional help and free up your time for more important courses. Let us handle your;

  • Dissertations and Thesis
  • Essays
  • All Assignments

  • Research papers
  • Terms Papers
  • Online Classes
Live ChatWhatsApp